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ABSTRACT: We have led a compound pendulum analyze utilizing Arduino and a related two-pivot 

accelerometer sensor as an estimating gadget. We have indicated that the utilization of an 

accelerometer to gauge both outspread and orbital increasing speeds of the pendulum at various 

situations along its pivot offers the chance of playing out a more intricate examination contrasted 

with the standard investigation of the pendulum analyze. Along these lines, we have demonstrated that 

this traditional trial can prompt a fascinating and ease test in mechanics.  

 

I. INTRODUCTION 
The physical pendulum experiment is the typical onetointroducethephysicsofoscillatingsystems. The 

usual aim of the analysis of this experiment  istodeterminethependulumperiodanddamping factor by using an 

angular position sensor [1,2]. 

Wehaveconductedthependulumexperimentbyusingatwoaxisaccelerometersensor.Suchsensorhasalreadybeenusedb

yFernandesetal.(2017)[3] but their study focused on the analysis of the time variation of the radial acceleration 

to investigate large-angle anharmonicoscillations. 

Here,wehaveusedtheaccelerometertomeasure both radial and orbital accelerations of thependu- 

lumatdifferentpositionsalongitsaxis,whichoffers thepossibilityofperformingamorecomplexanal- 

ysis compared to the usual single measurement of the pendulum period. 

Furthermore, we use a microcontroller and an associatedtwoaxisaccelerometersensortoacquire the data. Thus, we 

have used this simple and low costexperimentcomparedtothereadytousecom- mercial one to introduce a richer 

theory and data analysistoolsthatcanleadtoaninterestingexperiment inmechanics. 

Wehavedescribedthetheoreticalanalysisofthis experimentandpresentanexampleofapossibleexperimental setup, 

the analysis of the measuredradialandorbitalaccelerationinordertoacquirethe 

momentofinertia,thecenterofmass,thedamping factorandtheperiodofthependulum. 

 

II. EXAMPLE OF EXPERIMENTALSETUP 
WeuseanArduino[4]andatwoaxisaccelerometersensorasmeasuringdevices.TheArduinoisaninterestingchoiceforan

experiment,asitisaneasy- to-use and low-cost microcontroller, with a large user community. Even if Arduino was 

not initially developedasaphysicisttool,itcanbeusedinvari- ouscontextsofexperimentalphysicsactivities(e.g., see 

references[5–10]). 

 

 
Figure 1: (a) An example of an experimental setup. 

(b) An accelerometer sensor attached to the centerline of the pendulum, with one of its axes 

parallel to the centerline. 
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The experimental setup that we used here is shown in Fig.  1(a).  The accelerometer sensor is   a 

microelectromechanical inertial sensor which is preciselycalibratedbyusingthevalues+g,0gand 

−g for each axis with g = 9.8 m s
−
2. 

Thependulumusedinthisexperimentiscom-posed of a bar on which masses can beattachedto different positions. 

The accelerometerisattachedto the bar and positioned in such a way thatoneofits measurement axes lies parallel 

to thebar(Fig.1(b)). Special care should be taken 

sothatthewiresconnectingtheaccelerometertotheboardareflexibleenoughinordernottodampthependulum.Figure2sh

owsanexampleofdataacquiredbythe accelerometer. The main features of thegraph 

 

are:the radial acceleration measurement decreases and goes to g as t approaches the infinity. 

 

when the radial acceleration reaches itsmaxi- mum values, the orbital acceleration is essen- tially equal to zero 

(inset ofFig. 2). 

 

 
Figure 2: Radial (red) and orbital (black) accelerations measured by the accelerometer obtained with 

the ex- perimental setup displayed in Fig. 1. Inset shows the temporal evolution of both accelerations 

between 40 s and 45 s. In order to have both curves on the same plot, orbital acceleration is shifted by 

a constant offset of 9 in theinset. the period of the radial acceleration oscilla- tions is twice that of the orbital 

acceleration oscillations (inset of Fig. 2). 

In the next section, we will present the theory that explains these main features. 

 

III. THEORY 
i. Expression of the acceleration compo- nents measured by the accelerometer sensor 

Figure 3 shows a pendulum sketch with notations that will be used throughout this paper. O is the pivot point, tt 

is the pendulum mass center and A the accelerometer position. L and r stands for the distance between O and tt 

and O and A, respec- tively. We note Iλthe moment of inertia of the pendulum about the Oz axis. 

Applyingtheangularmomentumtheoremtothe pendulum and considering viscous damping leads to: 

 

• theradialaccelerationisasymmetricaboutthe 

Iλθ̈=−MgLsinθ−γθ̇ 

(1) 

straight line a = g contrary to the orbital acceleration that is symmetric about the line a = 0. 

where θ is the angle between the pendulumaxis Ott and the vertical axis, M is the mass of the sys- 

temandγisthecoefficientoffriction.Wenote small damping (κ <<ω) and the small angle ap- proximation (θ0 <<
π
), 

which leads from Eq. (2) 

to: 

• 

• 

• 
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Figure 3: Sketch of the pendulum and notations used in the text. The pivot is at O, the center of 

mass at tt and the accelerometer sensor is at A. 

 

Iλ= αML2 where the numerical factor α depends on the type of pendulum (α = 1 for a simple pen- 

 
 

θ =θ0e
−κt

cos(ωt) (8) 

θ̇  =−ωθ0e
−κt

sin(ωt) (9) 

θ̈   =−ω2θ0e
−κt

cos(ωt) (10) 

with   the   pendulum   angular   frequency   ω= 

2 2 g 

0 

ation components measured by the accelerometer 

for κ <<ω and θ0 <<
π
are given by: 

 

ar= rω2θ2e
−
2

κt
sin2(ωt) 

κt 

0 

aθ= −2κrωθ0e
−κt

sin(ωt) 

+
g.r

−α
Σ

sin
.
θe

−κt
cos(ωt)

Σ (12)
 

introduce the damping factor κ =
γ
 

λ 

g 

to obtain: 

With θ0 <<
π
, we can further approximate these 

θ̈=−
αL

sinθ−2κθ̇ 

(2) 

two expressions by: 

Forces acting on the proof mass (msensor) inside the accelerometer are its weight and the inertial 

forceduetoitsmovement.Thus,theradialandor- 

ar= rω2θ2e
−
2

κt
sin2(ωt) 

+g
.
1−θ2e

−
2

κt
cos2(ωt)

Σ
 

 

(13) 

bitalcomponentsoftheseforcesinthenon-inertial reference frame of the pendulum are givenby: 

 

Fr=msensorrθ̇2+msensorgcosθ (3) 

Fθ=−msensorrθ̈−msensorgsinθ (4) 

The acceleration components,  as measured  by 

aθ= −2κrωθ0e
−κt

sin(ωt) 

2I 

dulum and α ƒ= 1 for a physical pendulum). We 
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α L 
0 

θ 
α L 

0 0 

α L 

+
g.r

−α
Σ

θe
−κt

cos(ωt) 
(14)

 

Some comments can be made about Eqs. (11) and (12). We first focus on the radial acceleration ar. 

the accelerometer at a distance r from the pivot, are then given by:  

cos(cos(x))  and  sin  (x)  are  bothπ-periodic 

functions.  So aris a  
T
periodic functionwith 

2 

T  = 2π 

 

ar=rθ̇2+gcosθ (5) 

aθ=−rθ̈−gsinθ (6) 

Including the expression of θ¨ (Eq. (2)) into the expression of aθgives : 

ω being the pendulum period. Indeed, 

the pendulum reaches its maximum velocity and so its maximum radial acceleration each time θ is equal to 0. 

• g cos (θ0e
−κt

cos(ωt)) varies between between g cos(θ0) and g (blue curve in Fig. 4(b)) and 

goestogastapproachesinfinity.Physically, 

a=
g.r

−α
Σ

sinθ+2κrθ̇ (7) 

 

 

thisfunctionrepresents theprojectionofġ 

 
 

We choose θ = θ0  and θ̇   = 0 asinitialconditions •  rω2θ2e
−
2

κt
sin2(ωt) varies between rω2θ2and 

 

ofthependulummovement.Weonlyconsiderhere 0andtheupperenvelopeofthisfunction(red 

 
 

 

 

Figure5:(a)Calculatedorbitalaccelerationversustime.(b)Inred,graphoftheg.r−α
Σ

sin
.
θ0e

−κt
cos(ωt)

Σ
 

contribution;inblue,graphofthepart−2κrωθ0e
−κt

sin(ωt).L=30cm,θ0=15
◦
,r=45cm,κ=0.1s

−1
and 

α = 1 for both panels. 

onto the pendulum axis Ott. 

• 
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−
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curve in Fig. 4(b), note that it has been dis- placed by g) decreases exponentially as e
−
2

κt
. 

Physically,thisfunctionrepresentstheacceler- ation due to the radial centrifugal force feltby 

thesensor(asexpected,theaccelerationdueto the radial centrifugal force is maximum when the pendulum is 

vertical). This point and the previousoneexplainstheasymmetryofthera- dialaccelerationaboutthestraightlinear=g, 

as observed in Fig.2. 

We can now study the orbital acceleration aθ: 

• sin(cos(x)) and sin(x) are both2π-periodic functions. Therefore, aθis a T -periodicfunc-tion with T = 2
π
. 

Indeed, the angular ac- celerationθ̈  reachesitshighestandlowestval- ueseachtimethependulumpassesthroughits 

highest points. This point explains that the period of the radial acceleration is twice that of the orbitalone. 

grα sin (θ0e
−κt

cos(ωt)) goes to 0 as t approaches infinity and the sin(cos(x)) func- 

tionimpliesthattheupperandlowerenvelope of this part of the aθfunction are symmetric about the straight line of 

equation a = 0 (red curve in Fig.5(b)). 

 

• −2κrωθ0e
−κt

sin(ωt) goes to zero as t 

 
Figure 6:  Radial (red) and orbital (black)accelerations 

 

obtained from Eqs. (11) and (12) with θ0 = 20
◦
, L = 30 cm, r = 34 cm, α = 1.2 and κ = 0.01 s

−1
. 

Inset showsthetemporalevolutionofradial(red)andorbital 

(black) accelerations between 40 s and 45 s. In order to 

havebothcurvesonthesameplot,orbitalacceleration 

 
 

 

ThesensorpositionOAcanbemeasuredwith great accuracy. Thus, the position of the pen- dulum center of mass 

and moment of inertia are the two quantities which are difficult to determineexperimentally. Here,weusethefit of 

the temporal evolution of arand aθto de- termine the productαL. 

 

iii. Impactofαandronthemeasuredra- dial and orbitalaccelerations 

Figure 7 displays the evolution of the radial and orbital accelerations with time for different values of the 

moment of inertia (from α = 1 (Panel (a)) to α = 2.5 (Panel (d))). At the difference of the radial acceleration, we 

can see that the orbital accelera- tion depends strongly on α. Indeed, aθexpression at t = 0 leads to a (t = 0) =
r
 − 

1 g sin θ, 
 

 

that aθ(t = 0) <0 if α >
r
and aθ(t = 0) >0 if 

L 

α <
r
 

approaches infinity. The upper and lower en- velopesofthispartoftheaθfunctionaresym- metric about the straight 

line aθ= 0 (blue curve in Fig. 5(b)) and decreaseexponentially ase
−κt

. 

 

Figure 6 displays the radial (red) and orbital (black) accelerations obtained from Eqs. (11) and (12). We can see 

that the main features inferred from the data (Fig. 2) are well reproduced. 

 

 

which is an inverse function of α. We can also note 

is shifted by a constant offset of 9 in the inset. 

• 
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ii. Experimentally accessiblequantities 

The parameters describing the pendulum and its motion can be derived from the measurements of arand aθ. 

 

• ar(t = 0) = ar,min= g cos θ0. Thus, the mea- suredvalueofaratt=0leadstothevalueof θ0. 

A fit to the measured arupper envelope with anexponentialfunctionallowsustodetermine the damping factor κ of 

the pendulum from Eqs. (11) and (12). While, for small deflection angles θ, see Eqs. (13) and (14), exponential 

fitofanyenvelopeofmeasuredaroraθallows us to determine the dampingfactor. 

L . Thus, value of aθat t = 0 gives information 

on the α value. 

Figure 8 shows the evolution of the radial and orbital accelerations with time for different values of r.  

The distance OA increases from Panel (a)   to Panel (d). As expected, the amplitude of the radial acceleration 

increases with larger OAvalues as the centrifugal force acting on the proof mass increases and the amplitude of 

the orbital acceler- ation decreases with larger OA values as the rate of variation of θ̇ decreases with 

thisdistance. 

In particular, acceleration components measured bytheaccelerometerattachedtothepositionofthe point O are 

givenby: 

ar= g cosθ0e
−κt

cos(ωt) (15) 

aθ= −g sin
.
θ0e

−κt
cos(ωt)

Σ 
(16) 

Inthiscase,theonlyforceactingonthemassinside theaccelerometerisitsweightandtheexpressions 

oftheaccelerationdonotdependonα.Accelerom- eter sensor is used in this case as an angular posi- tionsensor. 

Wealsonotethattheaccelerationcomponents measuredbytheaccelerometerattachedtothepo- sition r = Lα are 

givenby: 

 

 
Figure 7:  The calculated radial (red) and orbital (black) acceleration with time with α = 1 (a), α 

= 1.5 (b),   α = 2.0 (c) and α = 2.5 (d). In order to have both curves on the same plot, orbital 

acceleration is shifted by a constant offset of 9.2. L = 30 cm, θ0 = 15
◦
, r = 45 cm and κ = 0.1 for 

allpanels. 
 

• 
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Figure 8: The calculated radial (red) and orbital (black) accelerations with time for different positions 

of the accelerometer relative to the center of mass tt. In order to have both curves  on the same plot, the 

orbital acceleration is shifted by a constant offset of 9.2. The accelerometer positions are (a) r = 0 cm, 

(b) r = 30 cm, 

(c) r = 45 cm, (d) r = 60 cm. L = 30 cm, θ0 = 15
◦
, α = 2 and κ = 0.1 for allpanels. 

 

 

 
Figure 9: Experimental setup used to study a bar pen- dulum. 

 

In this case, component of θ̈ due to the gravity force is counterbalanced by the orbital component of the 

force of gravity acting on the accelerometer sensor. Thus, aθis then directly proportional to the pendulum 

angular velocity. 

After having shown that Eqs. (11) and (12) ex- plainthefeaturesobservedexperimentally,wewill 

nowusethemtoretrievethependulumparameters κ, α and L for different experimentalsetups. 

 

IV. EXAMPLE OF DATAANALYSIS 
i. Example with a pendulumbar 

We first focus on the pendulum shown in Fig. 9  to derive its physical parameters.  We  use a bar  of a 45 cm 

length and mass 45 g with the pivotat16.5cmfromthecenterofmassandtheaccelerom- eter at 33cm. 

Figure 10 shows the radial and orbital accelera- tionsmeasuredbytheaccelerometerafterthepen- 

dulumhasbeendisplacedfromtheequilibriumpo- sitiontoaninitialangleof22
◦
. 
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Figure 10: Radial (red) and orbital (green) accelera- 

tionsmeasuredbytheaccelerometerintheconfigura- tion shown in Fig. 9. Solid lines are the best fit 

of the data with κ and α as free parameters. The best fit is given by 1/κ = 12.2 s and α =1.56. 

 

We have analyzed the data using Eqs. (11) and 

(12) with κ and α as free parameters. The results of the fit are shown as black curves in Fig.  10. We  have  

derived the best fit for 1/κ = 12.2 s and   α =1.56. 

Assumingthependulumtobeasimplehomoge- neous slab, we calculate that the inertia moment of  the  bar  about  

the  rotation  axis  λ is  equalto 

1.93     10
−
3 kg m2,  which  leads  to  α  =  1.62.The 

holes in the bar, which are used for attaching the masses, together with the mass of the accelerom- eter, explain 

the difference between this and with the α value obtained from the data fit. This exper- 

imentallowsustodeterminewithagoodaccuracy the moment of inertia of thependulum. 

 

ii. Retrieval of the mass centerposition 

Thependulumoftheprevioussubsectionisasym- metric bar, thus, its mass center position can be 

determinedprecisely.Inthegeneralcase,themass centerpositioncanbedifficulttodetermineandwe can fit the data by 

using Eqs. (11) and (12) with κ, α and L as free parameters and infer the position of the center ofmass. 

As an example of such analysis, we use a  

  

 
Figure 11: Experimental setup used to study compound pendula, with added masses.  

 

pendulumcomposedofabaronwhichseveralmasses canbeattachedtoatdifferentpositionstoacquired data that 

corresponds to pendulums of different valuesofαandL(Fig.11(a)and(b)). 
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Figure 12 (a) and (b) displays the radial and or- bital accelerations measured by the accelerometer after each 

pendulum shown in Fig. 11 has been displaced by an initial angle of 20.5
◦
. 

We fit the data by using Eqs. (11) and (12) with κ, α and L as free parameters. Results of the fitare shown as the 

black curves in the insets of Fig. 12. Best fit are obtained with 1/κ = 111 s, α =  1.162 and L = 0.293 m for the 

pendulum of Fig. 11(a) and 1/κ = 101 s, α = 6.55 and L = 0.074 m for the pendulum of Fig.11(b). 

For the examples displayed in Fig. 12, the evo- lutionoftheorbitalaccelerationfromPanels(a) to 

(b)showsanincreaseofα,whichisconsistentwith the fact that pendulum configuration goes from a configuration 

close to a simple pendulum (α 1Fig. 11(a)) to a compound pendulum (α >1 Fig. 11(b)). 

Figure12showsthattheangularacceleration(in green)ismuchmoresensitivetothevalueofαthan the radial acceleration 

(in red). Therefore, orbital accelerationisagoodquantitytomeasureandtofit in order to determine the moment of 

inertia of a pendulum. 

 

iii. Impact of r on the acquireddata 

WehaveshowninsectionIIIthattheorbitalaccel- eration is very sensitive to the accelerometer sen- 

sorpositionwithrespecttothependulumrotation axis. As this position is precisely known, we can 

performseveralmeasurementswithdifferentposi- tionsoftheaccelerometertoimprovetheaccuracy and/or the 

precision of the derived pendulum pa- rameters. As an example of such analysis, we use the experimental setups 

shown in Fig.13. 

Figure 14 (a) and (b) display the radial and or- bital accelerations measured by the accelerometer after each 

pendulum shown in Fig. 13 has been displaced by an initial angle of 20.5
◦
. 

Fits of the data using Eqs.   (11) and (12) with   κ, α and L as free parameters are shown as black curves in Fig. 

14. Best fit are obtained with 1/κ = 111 s, α = 1.162 and L = 29.3 cm for the pendulum of Fig.  13(a) and with 

1/κ = 100 s, α = 1.162 and  L = 29.2 cm for the pendulum of Fig.13(b). 

The position of the accelerometer does not af- fect the calculated values of the moment of inertia of the 

pendulum and only slightly affects the cen- ter of mass position. The new configuration of the wires connecting 

the accelerometer in Fig. 13(b) changes slightly the κ value. Thus, performing a 

secondmeasurementwithadifferentpositionofthe accelerometerallowustobemoreconfidentinthe results retrieved 

from the firstone. 

We can also note that the orbital acceleration increases with lower OA values, therefore the or- bital 

acceleration fit precision is better when the accelerometerisinthepositionofFig.13(b),while the precision of the 

radial acceleration fit is better when the accelerometer is in the position of Fig. 13(a). 

 

V. CONCLUSIONS 
Wehaveshownthatthependulumexperimentana- lyzedwithanaccelerometersensorleadstoatheo- retical study richer 

than the classical one. We have derived theoretical expressions for the radial and 

orbitalaccelerationdatarecordedbyanaccelerom- eterandseparatedthecontributionsfromthepen- 

 

 

 
Figure 12: Radial (red) and orbital (green) accelerations measured by the accelerometer. (a) and (b) 

correspond  to the setups displayed in Fig. 11 (a) and (b), respectively. Insets in (a) and (b) show the 

temporal evolution of the radial (red) and orbital (green) accelerations and the best fit (black) between 

35 s and 45 s. In order to have both curves on the same plot, orbital acceleration is shifted by a 

constant offset of 9 in the inset of (a) and by 8   in(b). 
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Figure 13: Experimental setup used to study the im- pact of the acceleration sensor position on the 

acquired data. 

 

dulum angular motion and the gravitational force on the proof mass. 

We have also shown that the orbitalacceleration is an interesting data to retrieve the moment of inertia of a 

pendulum. 

The possibility to have different positions of the sensorallowsustoperformseveralmeasurements with the same 

pendulum to improve the accuracy and/or the precision of the derived pendulum  parameters. 

In this paper, we have only focused on the clas- sicalpendulumbutthedeviceusedherecouldalso 

beappliedtomorecomplexsystemssuchaschaotic pendulums. 

 

 
Figure 14: Radial (red) and orbital (green) accelerations measured by the accelerometer. (a) and (b) 

correspond  to the setups displayed in Fig. 13(a) and (b), respectively. Insets in (a) and (b) show the 

temporal evolution of  the radial (red), and orbital (green) accelerations and the best fit (black) 

between 35 s and 45 s. In order to have 

bothcurvesonthesameplot,orbitalaccelerationisshiftedbyaconstantoffsetof9intheinsetsof(a)and(b). 
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